Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1247335, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034592

RESUMO

Animal behavior, from simple to complex, is dependent on the faithful wiring of neurons into functional neural circuits. Neural circuits undergo dramatic experience-dependent remodeling during brief developmental windows called critical periods. Environmental experience during critical periods of plasticity produces sustained changes to circuit function and behavior. Precocious critical period closure is linked to autism spectrum disorders, whereas extended synaptic remodeling is thought to underlie circuit dysfunction in schizophrenia. Thus, resolving the mechanisms that instruct critical period timing is important to our understanding of neurodevelopmental disorders. Control of critical period timing is modulated by neuron-intrinsic cues, yet recent data suggest that some determinants are derived from neighboring glial cells (astrocytes, microglia, and oligodendrocytes). As glia make up 50% of the human brain, understanding how these diverse cells communicate with neurons and with each other to sculpt neural plasticity, especially during specialized critical periods, is essential to our fundamental understanding of circuit development and maintenance.

2.
STAR Protoc ; 4(4): 102636, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37837624

RESUMO

Sensory experience instructs neurodevelopment and refines sensory processing. Here, we describe a minimally invasive protocol to immobilize zebrafish during early development to control visual experience. We describe how to prepare larvae for embedding in agarose at two separate timepoints in development. Then we describe how to build a behavior rig and use software to track zebrafish behaviors. Finally, we detail analyzing behavioral data to validate the protocol and determine outcomes of sensory dependent plasticity. For complete details on the use and execution of this protocol, please refer to Hageter et al. (2023).1.

3.
Zebrafish ; 20(3): 122-125, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310180

RESUMO

One of the greatest expenses in running a zebrafish laboratory is the aquatic systems used for housing. These critical pieces of equipment are essential and incorporate components undergoing constant activity in pumping water, monitoring, dosing, and filtration. The systems available on the market are robust, yet ongoing activity eventually leads to the need for repair or replacement. Moreover, some systems are no longer commercially available, impairing the ability to service this critical infrastructure. In this study, we demonstrate a do it yourself (DIY) method to re-engineer an aquatic system's pumps and plumbing, which hybridizes a system no longer commercially available with components used by active vendors. This transition from a two external pump Aquatic Habitat/Pentair design to an individual submerged pump Aquaneering-like plan saves funds by expanding infrastructure longevity. Our hybridized configuration has been in uninterrupted use for >3 years, supporting zebrafish health and high fecundity.


Assuntos
Engenharia Sanitária , Peixe-Zebra , Animais , Fertilidade , Laboratórios , Longevidade
4.
Cell Rep ; 42(4): 112287, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36952349

RESUMO

During the visual critical period (CP), sensory experience refines the structure and function of visual circuits. The basis of this plasticity was long thought to be limited to cortical circuits, but recently described thalamic plasticity challenges this dogma and demonstrates greater complexity underlying visual plasticity. Yet how visual experience modulates thalamic neurons or how the thalamus modulates CP timing is incompletely understood. Using a larval zebrafish, thalamus-centric ocular dominance model, we show functional changes in the thalamus and a role of inhibitory signaling to establish CP timing using a combination of functional imaging, optogenetics, and pharmacology. Hemisphere-specific changes in genetically defined thalamic neurons correlate with changes in visuomotor behavior, establishing a role of thalamic plasticity in modulating motor performance. Our work demonstrates that visual plasticity is broadly conserved and that visual experience leads to neuron-level functional changes in the thalamus that require inhibitory signaling to establish critical period timing.


Assuntos
Córtex Visual , Peixe-Zebra , Animais , Córtex Visual/fisiologia , Tálamo/fisiologia , Período Crítico Psicológico , Neurônios , Plasticidade Neuronal/fisiologia
5.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993391

RESUMO

Brain laterality is a prominent feature in Bilateria, where neural functions are favored in a single brain hemisphere. These hemispheric specializations are thought to improve behavioral performance and are commonly observed as sensory or motor asymmetries, such as handedness in humans. Despite its prevalence, our understanding of the neural and molecular substrates instructing functional lateralization is limited. Moreover, how functional lateralization is selected for or modulated throughout evolution is poorly understood. While comparative approaches offer a powerful tool for addressing this question, a major obstacle has been the lack of a conserved asymmetric behavior in genetically tractable organisms. Previously, we described a robust motor asymmetry in larval zebrafish. Following the loss of illumination, individuals show a persistent turning bias that is associated with search pattern behavior with underlying functional lateralization in the thalamus. This behavior permits a simple yet robust assay that can be used to address fundamental principles underlying lateralization in the brain across taxa. Here, we take a comparative approach and show that motor asymmetry is conserved across diverse larval teleost species, which have diverged over the past 200 million years. Using a combination of transgenic tools, ablation, and enucleation, we show that teleosts exhibit two distinct forms of motor asymmetry, vision-dependent and - independent. These asymmetries are directionally uncorrelated, yet dependent on the same subset of thalamic neurons. Lastly, we leverage Astyanax sighted and blind morphs, which show that fish with evolutionarily derived blindness lack both retinal-dependent and -independent motor asymmetries, while their sighted surface conspecifics retained both forms. Our data implicate that overlapping sensory systems and neuronal substrates drive functional lateralization in a vertebrate brain that are likely targets for selective modulation during evolution.

6.
Front Behav Neurosci ; 15: 777778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938167

RESUMO

Innate behavioral biases such as human handedness are a ubiquitous form of inter-individual variation that are not strictly hardwired into the genome and are influenced by diverse internal and external cues. Yet, genetic and environmental factors modulating behavioral variation remain poorly understood, especially in vertebrates. To identify genetic and environmental factors that influence behavioral variation, we take advantage of larval zebrafish light-search behavior. During light-search, individuals preferentially turn in leftward or rightward loops, in which directional bias is sustained and non-heritable. Our previous work has shown that bias is maintained by a habenula-rostral PT circuit and genes associated with Notch signaling. Here we use a medium-throughput recording strategy and unbiased analysis to show that significant individual to individual variation exists in wildtype larval zebrafish turning preference. We classify stable left, right, and unbiased turning types, with most individuals exhibiting a directional preference. We show unbiased behavior is not due to a loss of photo-responsiveness but reduced persistence in same-direction turning. Raising larvae at elevated temperature selectively reduces the leftward turning type and impacts rostral PT neurons, specifically. Exposure to conspecifics, variable salinity, environmental enrichment, and physical disturbance does not significantly impact inter-individual turning bias. Pharmacological manipulation of Notch signaling disrupts habenula development and turn bias individuality in a dose dependent manner, establishing a direct role of Notch signaling. Last, a mutant allele of a known Notch pathway affecter gene, gsx2, disrupts turn bias individuality, implicating that brain regions independent of the previously established habenula-rostral PT likely contribute to inter-individual variation. These results establish that larval zebrafish is a powerful vertebrate model for inter-individual variation with established neural targets showing sensitivity to specific environmental and gene signaling disruptions. Our results provide new insight into how variation is generated in the vertebrate nervous system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...